blob: 48308ee247da78da286c1118033b91d6b85e9c46 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
--- include/Ldokchitser.h.orig 2012-08-08 21:21:55 UTC
+++ include/Ldokchitser.h
@@ -1,3 +1,5 @@
+// Patches borrowed from SageMath.
+
#ifndef Ldokchitser_H
#define Ldokchitser_H
@@ -69,7 +71,7 @@ phi_series(int precision)
// compute the values m[j] for the respective lambda_k[j]
- Complex m[N+1];
+ std::vector<Complex> m(N+1);
for (j=1;j<=N;j++)
m[j] = -2*lambda_k[j] + 2;
@@ -78,7 +80,8 @@ phi_series(int precision)
int n,fact_n;
Complex log_Gamma[N+1][a+1][MYDIGITS+1];
- Complex sum_log_Gamma[N+1][MYDIGITS+1];
+ std::vector<std::vector<Complex> > sum_log_Gamma(N+1);
+ for (j=1;j<=N;j++) sum_log_Gamma[j].resize(MYDIGITS+1);
for (j=1;j<=N;j++)
for (n=0;n<=MYDIGITS;n++)
@@ -103,8 +106,13 @@ phi_series(int precision)
// compute the exponential taylor series for gamma = exp(sum_log_Gamma)
- Complex exp_sum_log_Gamma[N+1][MYDIGITS+1][MYDIGITS+1]; // symmetric functions
- Complex gamma[N+1][MYDIGITS+1]; // gamma(s+m[j]) for j = 1 to N
+ std::vector<std::vector<std::vector<Complex> > > exp_sum_log_Gamma(N+1); // symmetric functions
+ std::vector<std::vector<Complex> > gamma(N+1); // gamma(s+m[j]) for j = 1 to N
+ for (j=1;j<=N;j++){
+ exp_sum_log_Gamma[j].resize(MYDIGITS+1);
+ gamma[j].resize(MYDIGITS+1);
+ }
+ for (j=1;j<=N;j++) for (n=0;n<=MYDIGITS;n++) exp_sum_log_Gamma[j][n].resize(MYDIGITS+1);
Complex temp_gamma[MYDIGITS+1];
Complex temp_mult_gamma[MYDIGITS+1];
Complex temp_exp_sum_log_Gamma[MYDIGITS+1];
|