summaryrefslogtreecommitdiff
path: root/graphics/py-ManimPango/files/isoline_demo.py
blob: 53bd1a51da61ac645d09ce4ecf95ae713855d090 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# from examples/isoline_demo.py

""" Code for demo-ing and experimentation. Prepare for a mess """
from isosurfaces import plot_isoline
from isosurfaces.isoline import (
    Cell,
    build_tree,
    Triangulator,
    CurveTracer,
)
import numpy as np
import cairo

min_depth = 5
pmin = np.array([-8, -6])
pmax = np.array([8, 6])


def f(x, y):
    return y * (x - y) ** 2 - 4 * x - 8


# Here we directly use plot_implicit internals in order to see the quadtree
fn = lambda u: f(u[0], u[1])
tol = (pmax - pmin) / 1000
quadtree = build_tree(2, fn, pmin, pmax, min_depth, 5000, tol)
triangles = Triangulator(quadtree, fn).triangulate()
curves = CurveTracer(triangles, fn, tol).trace()


def g(x, y):
    return x ** 3 - x - y ** 2


# Typical usage
curves1 = plot_isoline(
    lambda u: g(u[0], u[1]),
    pmin,
    pmax,
    min_depth=4,
    max_quads=1000,
)


def h(x, y):
    return x ** 4 + y ** 4 - np.sin(x) - np.sin(4 * y)


curves2 = plot_isoline(lambda u: h(u[0], u[1]), pmin, pmax, 4, 1000)


WIDTH = 640
HEIGHT = 480


def setup_context(c):
    # reflection to change math units to screen units
    scale = min(WIDTH / (pmax[0] - pmin[0]), HEIGHT / (pmax[1] - pmin[1]))
    c.scale(scale, -scale)
    c.translate(WIDTH / scale / 2, -HEIGHT / scale / 2)
    c.set_line_join(cairo.LINE_JOIN_BEVEL)


def draw_axes(c):
    c.save()
    c.set_line_width(0.1)
    c.move_to(0, -100)
    c.line_to(0, 100)
    c.stroke()
    c.move_to(-100, 0)
    c.line_to(100, 0)
    c.stroke()
    c.restore()


def draw_quad(c, quad: Cell):
    width = 0
    if quad.depth <= min_depth:
        width = 0.02
    elif quad.depth == min_depth + 1:
        width = 0.01
    else:
        width = 0.005
    c.set_line_width(0.5 * width)

    if quad.children:
        c.move_to(*((quad.vertices[0].pos + quad.vertices[1].pos) / 2))
        c.line_to(*((quad.vertices[2].pos + quad.vertices[3].pos) / 2))
        c.move_to(*((quad.vertices[0].pos + quad.vertices[2].pos) / 2))
        c.line_to(*((quad.vertices[1].pos + quad.vertices[3].pos) / 2))
        c.stroke()
        for child in quad.children:
            draw_quad(c, child)


def draw_quads(c):
    c.save()
    draw_quad(c, quadtree)
    c.restore()


def draw_bg(c):
    c.save()
    c.set_source_rgb(1, 1, 1)
    c.paint()
    c.restore()


def draw_curves(c, curves_list, rgb):
    print(
        "drawing", sum(map(len, curves_list)), "segments in", len(curves_list), "curves"
    )
    c.set_source_rgb(*rgb)
    # draw curves
    c.save()
    c.set_line_width(0.03)
    for curve in curves_list:
        c.move_to(*curve[0])
        for v in curve:
            c.line_to(*v)
        c.stroke()
    c.restore()


with cairo.SVGSurface("demo.svg", WIDTH, HEIGHT) as surface:
    c = cairo.Context(surface)
    setup_context(c)
    draw_bg(c)
    draw_axes(c)
    # draw_quads(c)
    draw_curves(c, curves, [0.1, 0.1, 0.8])
    draw_curves(c, curves1, [0.8, 0.1, 0.1])
    draw_curves(c, curves2, [0.1, 0.6, 0.1])