summaryrefslogtreecommitdiff
path: root/misc/py-orange3-educational
diff options
context:
space:
mode:
Diffstat (limited to 'misc/py-orange3-educational')
-rw-r--r--misc/py-orange3-educational/Makefile29
-rw-r--r--misc/py-orange3-educational/distinfo3
-rw-r--r--misc/py-orange3-educational/pkg-descr4
3 files changed, 0 insertions, 36 deletions
diff --git a/misc/py-orange3-educational/Makefile b/misc/py-orange3-educational/Makefile
deleted file mode 100644
index 6677cf06db39..000000000000
--- a/misc/py-orange3-educational/Makefile
+++ /dev/null
@@ -1,29 +0,0 @@
-PORTNAME= orange3-educational
-DISTVERSION= 0.4.0
-PORTREVISION= 3
-CATEGORIES= misc education python
-PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}
-
-MAINTAINER= yuri@FreeBSD.org
-COMMENT= Orange add-on: widgets for machine learning and data mining
-WWW= https://github.com/biolab/orange3-educational
-
-LICENSE= CC-BY-3.0
-LICENSE_FILE= ${WRKSRC}/LICENSE
-
-DEPRECATED= Depends on expiring misc/orange3
-EXPIRATION_DATE=2025-06-21
-
-RUN_DEPENDS= orange3>0:misc/orange3 \
- ${PYNUMPY} \
- ${PYTHON_PKGNAMEPREFIX}beautifulsoup>0:www/py-beautifulsoup@${PY_FLAVOR}
-
-USES= python
-USE_PYTHON= distutils autoplist
-
-USE_GITHUB= yes
-GH_ACCOUNT= biolab
-
-NO_ARCH= yes
-
-.include <bsd.port.mk>
diff --git a/misc/py-orange3-educational/distinfo b/misc/py-orange3-educational/distinfo
deleted file mode 100644
index 1e548262fe99..000000000000
--- a/misc/py-orange3-educational/distinfo
+++ /dev/null
@@ -1,3 +0,0 @@
-TIMESTAMP = 1618867149
-SHA256 (biolab-orange3-educational-0.4.0_GH0.tar.gz) = e8f452214a4fc9ad15ccb7c8328850cebb6a38aa483cb4763f1544c41ccd80d8
-SIZE (biolab-orange3-educational-0.4.0_GH0.tar.gz) = 3364301
diff --git a/misc/py-orange3-educational/pkg-descr b/misc/py-orange3-educational/pkg-descr
deleted file mode 100644
index d11003ee2d89..000000000000
--- a/misc/py-orange3-educational/pkg-descr
+++ /dev/null
@@ -1,4 +0,0 @@
-Widgets in the educational add-on demonstrate several key data mining and
-machine learning procedures. The widgets are useful for beginners to
-understand the inner working of key algorithms in the data mining and for
-teachers to be able to visually explain various methods in a classroom.