summaryrefslogtreecommitdiff
path: root/math/py-spvcm
diff options
context:
space:
mode:
Diffstat (limited to 'math/py-spvcm')
-rw-r--r--math/py-spvcm/Makefile31
-rw-r--r--math/py-spvcm/distinfo3
-rw-r--r--math/py-spvcm/pkg-descr6
3 files changed, 0 insertions, 40 deletions
diff --git a/math/py-spvcm/Makefile b/math/py-spvcm/Makefile
deleted file mode 100644
index 731ff1b7e83e..000000000000
--- a/math/py-spvcm/Makefile
+++ /dev/null
@@ -1,31 +0,0 @@
-PORTNAME= spvcm
-PORTVERSION= 0.3.0
-PORTREVISION= 2
-CATEGORIES= math python
-MASTER_SITES= PYPI
-PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}
-
-MAINTAINER= sunpoet@FreeBSD.org
-COMMENT= Fit spatial multilevel models and diagnose convergence
-WWW= https://github.com/pysal/spvcm
-
-LICENSE= BSD3CLAUSE
-
-DEPRECATED= Upstream repository has been archived on Jul 9, 2024
-EXPIRATION_DATE=2025-04-30
-
-BUILD_DEPENDS= ${PYTHON_PKGNAMEPREFIX}setuptools>=0:devel/py-setuptools@${PY_FLAVOR} \
- ${PYTHON_PKGNAMEPREFIX}wheel>=0:devel/py-wheel@${PY_FLAVOR}
-RUN_DEPENDS= ${PYTHON_PKGNAMEPREFIX}libpysal>=0:science/py-libpysal@${PY_FLAVOR} \
- ${PYTHON_PKGNAMEPREFIX}numpy>=0,1:math/py-numpy@${PY_FLAVOR} \
- ${PYTHON_PKGNAMEPREFIX}pandas>=0,1:math/py-pandas@${PY_FLAVOR} \
- ${PYTHON_PKGNAMEPREFIX}scipy>=0:science/py-scipy@${PY_FLAVOR} \
- ${PYTHON_PKGNAMEPREFIX}seaborn>=0:math/py-seaborn@${PY_FLAVOR} \
- ${PYTHON_PKGNAMEPREFIX}spreg>=0:math/py-spreg@${PY_FLAVOR}
-
-USES= python
-USE_PYTHON= autoplist concurrent pep517
-
-NO_ARCH= yes
-
-.include <bsd.port.mk>
diff --git a/math/py-spvcm/distinfo b/math/py-spvcm/distinfo
deleted file mode 100644
index 6c43139a755b..000000000000
--- a/math/py-spvcm/distinfo
+++ /dev/null
@@ -1,3 +0,0 @@
-TIMESTAMP = 1609598753
-SHA256 (spvcm-0.3.0.tar.gz) = ce331bd5d6bcb64a07c4393093f3978763cfc8764ad0737e1866f3905e6cceae
-SIZE (spvcm-0.3.0.tar.gz) = 5724408
diff --git a/math/py-spvcm/pkg-descr b/math/py-spvcm/pkg-descr
deleted file mode 100644
index 094ee77cf74d..000000000000
--- a/math/py-spvcm/pkg-descr
+++ /dev/null
@@ -1,6 +0,0 @@
-Gibbs sampling for spatially-correlated variance-components
-
-This is a package to estimate spatially-correlated variance components
-models/varying intercept models. In addition to a general toolkit to conduct
-Gibbs sampling in Python, the package also provides an interface to PyMC3 and
-CODA.