summaryrefslogtreecommitdiff
path: root/math/py-numpy
diff options
context:
space:
mode:
authorSunpoet Po-Chuan Hsieh <sunpoet@FreeBSD.org>2019-02-22 19:55:51 +0000
committerSunpoet Po-Chuan Hsieh <sunpoet@FreeBSD.org>2019-02-22 19:55:51 +0000
commit09a7237d9b152bd5ca2b99d6371cc8ec45fc8356 (patch)
tree89707a54fb7233efc1b23fab4d719c7d73057fc1 /math/py-numpy
parentUpdate to 0.14.11 (diff)
Remove no-op TESTS_DESC
- Update pkg-descr
Notes
Notes: svn path=/head/; revision=493608
Diffstat (limited to 'math/py-numpy')
-rw-r--r--math/py-numpy/Makefile1
-rw-r--r--math/py-numpy/pkg-descr27
2 files changed, 11 insertions, 17 deletions
diff --git a/math/py-numpy/Makefile b/math/py-numpy/Makefile
index 3a3138568ebc..c4407f366f72 100644
--- a/math/py-numpy/Makefile
+++ b/math/py-numpy/Makefile
@@ -36,7 +36,6 @@ OPTIONS_SINGLE= BLASLIB
OPTIONS_SINGLE_BLASLIB= ATLAS NETLIB OPENBLAS
OPTIONS_DEFAULT= NETLIB SUITESPARSE
SUITESPARSE_DESC= Use AMD and UMFPACK in SuiteSparse
-TESTS_DESC= Install test suite requirements
ATLAS_USES= blaslapack:atlas
ATLAS_VARS= BLASLIBS="ptf77blas, ptcblas" BLASNAME=atlas LAPACKLIBS=alpack LIBRARIES=atlas_libs
diff --git a/math/py-numpy/pkg-descr b/math/py-numpy/pkg-descr
index 0d42298be8a2..16b3e2c3e8d9 100644
--- a/math/py-numpy/pkg-descr
+++ b/math/py-numpy/pkg-descr
@@ -1,18 +1,13 @@
-The fundamental package needed for scientific computing with Python is
-called NumPy. This package contains:
-
- * a powerful N-dimensional array object
- * sophisticated (broadcasting) functions
- * basic linear algebra functions
- * basic Fourier transforms
- * sophisticated random number capabilities
- * tools for integrating Fortran code.
-
-NumPy derives from the old Numeric code base and can be used as a
-replacement for Numeric. It also adds the features introduced by numarray
-and can also be used to replace numarray.
-
-Note: Development for Numeric has ceased, and users should transisition to
- NumPy as quickly as possible.
+NumPy is the fundamental package for scientific computing with Python. It
+contains among other things:
+- a powerful N-dimensional array object
+- sophisticated (broadcasting) functions
+- tools for integrating C/C++ and Fortran code
+- useful linear algebra, Fourier transform, and random number capabilities
+
+Besides its obvious scientific uses, NumPy can also be used as an efficient
+multi-dimensional container of generic data. Arbitrary data-types can be
+defined. This allows NumPy to seamlessly and speedily integrate with a wide
+variety of databases.
WWW: https://www.numpy.org/