summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRene Ladan <rene@FreeBSD.org>2025-06-02 19:34:00 +0200
committerRene Ladan <rene@FreeBSD.org>2025-06-02 19:34:00 +0200
commita755d1c0d03125e1bc7deece17d28b06e7170761 (patch)
tree4b3e41d4aa1ef50fc74cbf7169c1653c5ae6b7eb
parentmisc/py-gluonnlp: Remove expired port (diff)
misc/py-mxnet: Remove expired port
2025-06-01 misc/py-mxnet: Depends on expired misc/mxnet
-rw-r--r--MOVED1
-rw-r--r--misc/Makefile1
-rw-r--r--misc/py-mxnet/Makefile47
-rw-r--r--misc/py-mxnet/distinfo3
-rw-r--r--misc/py-mxnet/pkg-descr11
5 files changed, 1 insertions, 62 deletions
diff --git a/MOVED b/MOVED
index c866e0c6a51a..0297ce0ea4d3 100644
--- a/MOVED
+++ b/MOVED
@@ -4480,3 +4480,4 @@ databases/datasette||2025-06-02|Has expired: Depends on expired devel/py-pytest-
www/py-pydrive2||2025-06-02|Has expired: Depends on expired security/py-oauth2client
misc/py-gluoncv||2025-06-02|Has expired: Depends on expiring misc/py-mxnet
misc/py-gluonnlp||2025-06-02|Has expired: Depends on expiring misc/py-mxnet
+misc/py-mxnet||2025-06-02|Has expired: Depends on expired misc/mxnet
diff --git a/misc/Makefile b/misc/Makefile
index 80ff3d49d0b0..e5b6428d365b 100644
--- a/misc/Makefile
+++ b/misc/Makefile
@@ -473,7 +473,6 @@
SUBDIR += py-mmengine
SUBDIR += py-mmsegmentation
SUBDIR += py-molequeue
- SUBDIR += py-mxnet
SUBDIR += py-natten
SUBDIR += py-npTDMS
SUBDIR += py-numcodecs
diff --git a/misc/py-mxnet/Makefile b/misc/py-mxnet/Makefile
deleted file mode 100644
index 2775460740df..000000000000
--- a/misc/py-mxnet/Makefile
+++ /dev/null
@@ -1,47 +0,0 @@
-PORTNAME= mxnet
-DISTVERSION= 1.9.1
-PORTREVISION= 3
-CATEGORIES= misc # machine-learning
-PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}
-
-MAINTAINER= yuri@FreeBSD.org
-COMMENT= Apache MXNet: Ultra-scalable deep learning framework
-WWW= https://mxnet.apache.org/
-
-LICENSE= APACHE20
-
-DEPRECATED= Depends on expired misc/mxnet
-EXPIRATION_DATE=2025-06-01
-
-BUILD_DEPENDS= mxnet>0:misc/mxnet
-RUN_DEPENDS= mxnet>0:misc/mxnet \
- ${PYTHON_PKGNAMEPREFIX}graphviz>0:graphics/py-graphviz@${PY_FLAVOR} \
- ${PYTHON_PKGNAMEPREFIX}requests>=2.20.0:www/py-requests@${PY_FLAVOR}
-
-USES= python localbase
-USE_GITHUB= yes
-USE_PYTHON= distutils cython autoplist
-
-GH_ACCOUNT= apache
-GH_PROJECT= incubator-mxnet
-
-WRKSRC_SUBDIR= python
-
-POST_PLIST= fix-plist
-
-PYDISTUTILS_BUILDARGS= --with-cython
-PYDISTUTILS_INSTALLARGS= --with-cython
-
-post-patch:
- @${REINPLACE_CMD} -e 's|dll_path = \[curr_path, api_path, cmake_build_path\]|dll_path = ["${LOCALBASE}/lib"]|' ${WRKSRC}/mxnet/libinfo.py
-
-post-install:
- @${FIND} ${STAGEDIR}${PREFIX} -name "*.so" | ${XARGS} ${STRIP_CMD}
- # https://github.com/apache/incubator-mxnet/issues/17081
- @${RM} ${STAGEDIR}${PREFIX}/mxnet/libmxnet.so
- @${RMDIR} ${STAGEDIR}${PREFIX}/mxnet
-
-fix-plist: # see post-install
- @${REINPLACE_CMD} '/^mxnet\/libmxnet.so$$/d' ${TMPPLIST}
-
-.include <bsd.port.mk>
diff --git a/misc/py-mxnet/distinfo b/misc/py-mxnet/distinfo
deleted file mode 100644
index 237b7e3c56da..000000000000
--- a/misc/py-mxnet/distinfo
+++ /dev/null
@@ -1,3 +0,0 @@
-TIMESTAMP = 1652385057
-SHA256 (apache-incubator-mxnet-1.9.1_GH0.tar.gz) = cef85932e2b3caead235008473d29512b99581c07da3d10703ff5b6c1fb5bd50
-SIZE (apache-incubator-mxnet-1.9.1_GH0.tar.gz) = 23402468
diff --git a/misc/py-mxnet/pkg-descr b/misc/py-mxnet/pkg-descr
deleted file mode 100644
index 147ced68cf73..000000000000
--- a/misc/py-mxnet/pkg-descr
+++ /dev/null
@@ -1,11 +0,0 @@
-Apache MXNet is a deep learning framework designed for both efficiency and
-flexibility. It allows you to mix symbolic and imperative programming to
-maximize efficiency and productivity. At its core, MXNet contains a dynamic
-dependency scheduler that automatically parallelizes both symbolic and
-imperative operations on the fly. A graph optimization layer on top of that
-makes symbolic execution fast and memory efficient. MXNet is portable and
-lightweight, scaling effectively to multiple GPUs and multiple machines.
-
-MXNet is more than a deep learning project. It is a collection of blue prints
-and guidelines for building deep learning systems, and interesting insights of
-DL systems for hackers.