summaryrefslogtreecommitdiff
path: root/misc/py-torchao
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--misc/py-torchao/Makefile32
-rw-r--r--misc/py-torchao/distinfo5
-rw-r--r--misc/py-torchao/pkg-descr4
3 files changed, 41 insertions, 0 deletions
diff --git a/misc/py-torchao/Makefile b/misc/py-torchao/Makefile
new file mode 100644
index 000000000000..afe8d2314df5
--- /dev/null
+++ b/misc/py-torchao/Makefile
@@ -0,0 +1,32 @@
+PORTNAME= torchao
+DISTVERSIONPREFIX= v
+DISTVERSION= 0.13.0
+CATEGORIES= misc # machine-learning
+PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}
+
+MAINTAINER= yuri@FreeBSD.org
+COMMENT= PyTorch: Package for applying ao techniques to GPU models
+WWW= https://docs.pytorch.org/ao/stable/index.html \
+ https://github.com/pytorch/ao
+
+LICENSE= BSD3CLAUSE
+LICENSE_FILE= ${WRKSRC}/LICENSE
+
+PY_DEPENDS= ${PYNUMPY} \
+ ${PYTHON_PKGNAMEPREFIX}pytorch>0:misc/py-pytorch@${PY_FLAVOR}
+BUILD_DEPENDS= ${PY_DEPENDS}
+RUN_DEPENDS= ${PY_DEPENDS}
+
+USES= python
+USE_PYTHON= distutils autoplist pytest
+
+USE_GITHUB= yes
+GH_ACCOUNT= pytorch
+GH_PROJECT= ao
+GH_TUPLE= NVIDIA:cutlass:e51efbf:cutlass/third_party/cutlass
+
+NO_ARCH= yes
+
+# tests fail with: caught unexpected SystemExit!
+
+.include <bsd.port.mk>
diff --git a/misc/py-torchao/distinfo b/misc/py-torchao/distinfo
new file mode 100644
index 000000000000..8e8a224bd2e6
--- /dev/null
+++ b/misc/py-torchao/distinfo
@@ -0,0 +1,5 @@
+TIMESTAMP = 1758232597
+SHA256 (pytorch-ao-v0.13.0_GH0.tar.gz) = 3d2aac7c2dcc9bb7aabe5d9cf8bd508bac2b7e0e4582e162932bf4667a079d0c
+SIZE (pytorch-ao-v0.13.0_GH0.tar.gz) = 7937501
+SHA256 (NVIDIA-cutlass-e51efbf_GH0.tar.gz) = cbd9e9512cb85c6e6ea56f54cf9d83d879bc607a4b4f5180764291652ca30970
+SIZE (NVIDIA-cutlass-e51efbf_GH0.tar.gz) = 33083009
diff --git a/misc/py-torchao/pkg-descr b/misc/py-torchao/pkg-descr
new file mode 100644
index 000000000000..08e1fee9729d
--- /dev/null
+++ b/misc/py-torchao/pkg-descr
@@ -0,0 +1,4 @@
+torchao is analogous to a great API in Keras to view the visualization
+of the model which is very helpful while debugging your network.
+The aim is to provide information complementary to, what is not provided
+by print(your_model) in PyTorch.