1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
function add_ls(args) {
var svg = mg_get_svg_child_of(args.target);
var data = args.data[0];
var min_x = d3.min(data, function(d) {
return d[args.x_accessor]; });
var max_x = d3.max(data, function(d) {
return d[args.x_accessor]; });
d3.select(args.target).selectAll('.mg-least-squares-line').remove();
svg.append('svg:line')
.attr('x1', args.scales.X(min_x))
.attr('x2', args.scales.X(max_x))
.attr('y1', args.scales.Y(args.ls_line.fit(min_x)))
.attr('y2', args.scales.Y(args.ls_line.fit(max_x)))
.attr('class', 'mg-least-squares-line');
}
MG.add_ls = add_ls;
function add_lowess(args) {
var svg = mg_get_svg_child_of(args.target);
var lowess = args.lowess_line;
var line = d3.svg.line()
.x(function(d) {
return args.scales.X(d.x); })
.y(function(d) {
return args.scales.Y(d.y); })
.interpolate(args.interpolate);
svg.append('path')
.attr('d', line(lowess))
.attr('class', 'mg-lowess-line');
}
MG.add_lowess = add_lowess;
function lowess_robust(x, y, alpha, inc) {
// Used http://www.unc.edu/courses/2007spring/biol/145/001/docs/lectures/Oct27.html
// for the clear explanation of robust lowess.
// calculate the the first pass.
var _l;
var r = [];
var yhat = d3.mean(y);
var i;
for (i = 0; i < x.length; i += 1) { r.push(1); }
_l = _calculate_lowess_fit(x, y, alpha, inc, r);
var x_proto = _l.x;
var y_proto = _l.y;
// Now, take the fit, recalculate the weights, and re-run LOWESS using r*w instead of w.
for (i = 0; i < 100; i += 1) {
r = d3.zip(y_proto, y).map(function(yi) {
return Math.abs(yi[1] - yi[0]);
});
var q = d3.quantile(r.sort(), 0.5);
r = r.map(function(ri) {
return _bisquare_weight(ri / (6 * q));
});
_l = _calculate_lowess_fit(x, y, alpha, inc, r);
x_proto = _l.x;
y_proto = _l.y;
}
return d3.zip(x_proto, y_proto).map(function(d) {
var p = {};
p.x = d[0];
p.y = d[1];
return p;
});
}
MG.lowess_robust = lowess_robust;
function lowess(x, y, alpha, inc) {
var r = [];
for (var i = 0; i < x.length; i += 1) { r.push(1); }
var _l = _calculate_lowess_fit(x, y, alpha, inc, r);
}
MG.lowess = lowess;
function least_squares(x_, y_) {
var x, y, xi, yi,
_x = 0,
_y = 0,
_xy = 0,
_xx = 0;
var n = x_.length;
if (mg_is_date(x_[0])) {
x = x_.map(function(d) {
return d.getTime();
});
} else {
x = x_;
}
if (mg_is_date(y_[0])) {
y = y_.map(function(d) {
return d.getTime();
});
} else {
y = y_;
}
var xhat = d3.mean(x);
var yhat = d3.mean(y);
var numerator = 0,
denominator = 0;
for (var i = 0; i < x.length; i++) {
xi = x[i];
yi = y[i];
numerator += (xi - xhat) * (yi - yhat);
denominator += (xi - xhat) * (xi - xhat);
}
var beta = numerator / denominator;
var x0 = yhat - beta * xhat;
return {
x0: x0,
beta: beta,
fit: function(x) {
return x0 + x * beta;
}
};
}
MG.least_squares = least_squares;
function _pow_weight(u, w) {
if (u >= 0 && u <= 1) {
return Math.pow(1 - Math.pow(u, w), w);
} else {
return 0;
}
}
function _bisquare_weight(u) {
return _pow_weight(u, 2);
}
function _tricube_weight(u) {
return _pow_weight(u, 3);
}
function _neighborhood_width(x0, xis) {
return Array.max(xis.map(function(xi) {
return Math.abs(x0 - xi);
}));
}
function _manhattan(x1, x2) {
return Math.abs(x1 - x2);
}
function _weighted_means(wxy) {
var wsum = d3.sum(wxy.map(function(wxyi) {
return wxyi.w; }));
return {
xbar: d3.sum(wxy.map(function(wxyi) {
return wxyi.w * wxyi.x;
})) / wsum,
ybar: d3.sum(wxy.map(function(wxyi) {
return wxyi.w * wxyi.y;
})) / wsum
};
}
function _weighted_beta(wxy, xbar, ybar) {
var num = d3.sum(wxy.map(function(wxyi) {
return Math.pow(wxyi.w, 2) * (wxyi.x - xbar) * (wxyi.y - ybar);
}));
var denom = d3.sum(wxy.map(function(wxyi) {
return Math.pow(wxyi.w, 2) * Math.pow(wxyi.x - xbar, 2);
}));
return num / denom;
}
function _weighted_least_squares(wxy) {
var ybar, xbar, beta_i, x0;
var _wm = _weighted_means(wxy);
xbar = _wm.xbar;
ybar = _wm.ybar;
var beta = _weighted_beta(wxy, xbar, ybar);
return {
beta: beta,
xbar: xbar,
ybar: ybar,
x0: ybar - beta * xbar
};
}
function _calculate_lowess_fit(x, y, alpha, inc, residuals) {
// alpha - smoothing factor. 0 < alpha < 1/
//
//
var k = Math.floor(x.length * alpha);
var sorted_x = x.slice();
sorted_x.sort(function(a, b) {
if (a < b) {
return -1; } else if (a > b) {
return 1; }
return 0;
});
var x_max = d3.quantile(sorted_x, 0.98);
var x_min = d3.quantile(sorted_x, 0.02);
var xy = d3.zip(x, y, residuals).sort();
var size = Math.abs(x_max - x_min) / inc;
var smallest = x_min;
var largest = x_max;
var x_proto = d3.range(smallest, largest, size);
var xi_neighbors;
var x_i, beta_i, x0_i, delta_i, xbar, ybar;
// for each prototype, find its fit.
var y_proto = [];
for (var i = 0; i < x_proto.length; i += 1) {
x_i = x_proto[i];
// get k closest neighbors.
xi_neighbors = xy.map(function(xyi) {
return [
Math.abs(xyi[0] - x_i),
xyi[0],
xyi[1],
xyi[2]
];
}).sort().slice(0, k);
// Get the largest distance in the neighbor set.
delta_i = d3.max(xi_neighbors)[0];
// Prepare the weights for mean calculation and WLS.
xi_neighbors = xi_neighbors.map(function(wxy) {
return {
w: _tricube_weight(wxy[0] / delta_i) * wxy[3],
x: wxy[1],
y: wxy[2]
};
});
// Find the weighted least squares, obviously.
var _output = _weighted_least_squares(xi_neighbors);
x0_i = _output.x0;
beta_i = _output.beta;
//
y_proto.push(x0_i + beta_i * x_i);
}
return { x: x_proto, y: y_proto };
}
|