summaryrefslogtreecommitdiff
path: root/priv/static/js/metricsgraphics/misc/smoothers.js
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--priv/static/js/metricsgraphics/misc/smoothers.js280
1 files changed, 280 insertions, 0 deletions
diff --git a/priv/static/js/metricsgraphics/misc/smoothers.js b/priv/static/js/metricsgraphics/misc/smoothers.js
new file mode 100644
index 0000000..aab8a00
--- /dev/null
+++ b/priv/static/js/metricsgraphics/misc/smoothers.js
@@ -0,0 +1,280 @@
+function add_ls(args) {
+ var svg = mg_get_svg_child_of(args.target);
+ var data = args.data[0];
+ var min_x = d3.min(data, function(d) {
+ return d[args.x_accessor]; });
+ var max_x = d3.max(data, function(d) {
+ return d[args.x_accessor]; });
+
+ d3.select(args.target).selectAll('.mg-least-squares-line').remove();
+
+ svg.append('svg:line')
+ .attr('x1', args.scales.X(min_x))
+ .attr('x2', args.scales.X(max_x))
+ .attr('y1', args.scales.Y(args.ls_line.fit(min_x)))
+ .attr('y2', args.scales.Y(args.ls_line.fit(max_x)))
+ .attr('class', 'mg-least-squares-line');
+}
+
+MG.add_ls = add_ls;
+
+function add_lowess(args) {
+ var svg = mg_get_svg_child_of(args.target);
+ var lowess = args.lowess_line;
+
+ var line = d3.svg.line()
+ .x(function(d) {
+ return args.scales.X(d.x); })
+ .y(function(d) {
+ return args.scales.Y(d.y); })
+ .interpolate(args.interpolate);
+
+ svg.append('path')
+ .attr('d', line(lowess))
+ .attr('class', 'mg-lowess-line');
+}
+
+MG.add_lowess = add_lowess;
+
+function lowess_robust(x, y, alpha, inc) {
+ // Used http://www.unc.edu/courses/2007spring/biol/145/001/docs/lectures/Oct27.html
+ // for the clear explanation of robust lowess.
+
+ // calculate the the first pass.
+ var _l;
+ var r = [];
+ var yhat = d3.mean(y);
+ var i;
+ for (i = 0; i < x.length; i += 1) { r.push(1); }
+ _l = _calculate_lowess_fit(x, y, alpha, inc, r);
+ var x_proto = _l.x;
+ var y_proto = _l.y;
+
+ // Now, take the fit, recalculate the weights, and re-run LOWESS using r*w instead of w.
+
+ for (i = 0; i < 100; i += 1) {
+ r = d3.zip(y_proto, y).map(function(yi) {
+ return Math.abs(yi[1] - yi[0]);
+ });
+
+ var q = d3.quantile(r.sort(), 0.5);
+
+ r = r.map(function(ri) {
+ return _bisquare_weight(ri / (6 * q));
+ });
+
+ _l = _calculate_lowess_fit(x, y, alpha, inc, r);
+ x_proto = _l.x;
+ y_proto = _l.y;
+ }
+
+ return d3.zip(x_proto, y_proto).map(function(d) {
+ var p = {};
+ p.x = d[0];
+ p.y = d[1];
+ return p;
+ });
+}
+
+MG.lowess_robust = lowess_robust;
+
+function lowess(x, y, alpha, inc) {
+ var r = [];
+ for (var i = 0; i < x.length; i += 1) { r.push(1); }
+ var _l = _calculate_lowess_fit(x, y, alpha, inc, r);
+}
+
+MG.lowess = lowess;
+
+function least_squares(x_, y_) {
+ var x, y, xi, yi,
+ _x = 0,
+ _y = 0,
+ _xy = 0,
+ _xx = 0;
+
+ var n = x_.length;
+ if (mg_is_date(x_[0])) {
+ x = x_.map(function(d) {
+ return d.getTime();
+ });
+ } else {
+ x = x_;
+ }
+
+ if (mg_is_date(y_[0])) {
+ y = y_.map(function(d) {
+ return d.getTime();
+ });
+ } else {
+ y = y_;
+ }
+
+ var xhat = d3.mean(x);
+ var yhat = d3.mean(y);
+ var numerator = 0,
+ denominator = 0;
+
+ for (var i = 0; i < x.length; i++) {
+ xi = x[i];
+ yi = y[i];
+ numerator += (xi - xhat) * (yi - yhat);
+ denominator += (xi - xhat) * (xi - xhat);
+ }
+
+ var beta = numerator / denominator;
+ var x0 = yhat - beta * xhat;
+
+ return {
+ x0: x0,
+ beta: beta,
+ fit: function(x) {
+ return x0 + x * beta;
+ }
+ };
+}
+
+MG.least_squares = least_squares;
+
+function _pow_weight(u, w) {
+ if (u >= 0 && u <= 1) {
+ return Math.pow(1 - Math.pow(u, w), w);
+ } else {
+ return 0;
+ }
+}
+
+function _bisquare_weight(u) {
+ return _pow_weight(u, 2);
+}
+
+function _tricube_weight(u) {
+ return _pow_weight(u, 3);
+}
+
+function _neighborhood_width(x0, xis) {
+ return Array.max(xis.map(function(xi) {
+ return Math.abs(x0 - xi);
+ }));
+}
+
+function _manhattan(x1, x2) {
+ return Math.abs(x1 - x2);
+}
+
+function _weighted_means(wxy) {
+ var wsum = d3.sum(wxy.map(function(wxyi) {
+ return wxyi.w; }));
+
+ return {
+ xbar: d3.sum(wxy.map(function(wxyi) {
+ return wxyi.w * wxyi.x;
+ })) / wsum,
+ ybar: d3.sum(wxy.map(function(wxyi) {
+ return wxyi.w * wxyi.y;
+ })) / wsum
+ };
+}
+
+function _weighted_beta(wxy, xbar, ybar) {
+ var num = d3.sum(wxy.map(function(wxyi) {
+ return Math.pow(wxyi.w, 2) * (wxyi.x - xbar) * (wxyi.y - ybar);
+ }));
+
+ var denom = d3.sum(wxy.map(function(wxyi) {
+ return Math.pow(wxyi.w, 2) * Math.pow(wxyi.x - xbar, 2);
+ }));
+
+ return num / denom;
+}
+
+function _weighted_least_squares(wxy) {
+ var ybar, xbar, beta_i, x0;
+
+ var _wm = _weighted_means(wxy);
+
+ xbar = _wm.xbar;
+ ybar = _wm.ybar;
+
+ var beta = _weighted_beta(wxy, xbar, ybar);
+
+ return {
+ beta: beta,
+ xbar: xbar,
+ ybar: ybar,
+ x0: ybar - beta * xbar
+
+ };
+}
+
+function _calculate_lowess_fit(x, y, alpha, inc, residuals) {
+ // alpha - smoothing factor. 0 < alpha < 1/
+ //
+ //
+ var k = Math.floor(x.length * alpha);
+
+ var sorted_x = x.slice();
+
+ sorted_x.sort(function(a, b) {
+ if (a < b) {
+ return -1; } else if (a > b) {
+ return 1; }
+
+ return 0;
+ });
+
+ var x_max = d3.quantile(sorted_x, 0.98);
+ var x_min = d3.quantile(sorted_x, 0.02);
+
+ var xy = d3.zip(x, y, residuals).sort();
+
+ var size = Math.abs(x_max - x_min) / inc;
+
+ var smallest = x_min;
+ var largest = x_max;
+ var x_proto = d3.range(smallest, largest, size);
+
+ var xi_neighbors;
+ var x_i, beta_i, x0_i, delta_i, xbar, ybar;
+
+ // for each prototype, find its fit.
+ var y_proto = [];
+
+ for (var i = 0; i < x_proto.length; i += 1) {
+ x_i = x_proto[i];
+
+ // get k closest neighbors.
+ xi_neighbors = xy.map(function(xyi) {
+ return [
+ Math.abs(xyi[0] - x_i),
+ xyi[0],
+ xyi[1],
+ xyi[2]
+ ];
+ }).sort().slice(0, k);
+
+ // Get the largest distance in the neighbor set.
+ delta_i = d3.max(xi_neighbors)[0];
+
+ // Prepare the weights for mean calculation and WLS.
+
+ xi_neighbors = xi_neighbors.map(function(wxy) {
+ return {
+ w: _tricube_weight(wxy[0] / delta_i) * wxy[3],
+ x: wxy[1],
+ y: wxy[2]
+ };
+ });
+
+ // Find the weighted least squares, obviously.
+ var _output = _weighted_least_squares(xi_neighbors);
+
+ x0_i = _output.x0;
+ beta_i = _output.beta;
+
+ //
+ y_proto.push(x0_i + beta_i * x_i);
+ }
+
+ return { x: x_proto, y: y_proto };
+}