summaryrefslogtreecommitdiff
path: root/priv/static/js/metricsgraphics/common/scales.js
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--priv/static/js/metricsgraphics/common/scales.js340
1 files changed, 340 insertions, 0 deletions
diff --git a/priv/static/js/metricsgraphics/common/scales.js b/priv/static/js/metricsgraphics/common/scales.js
new file mode 100644
index 0000000..4e76285
--- /dev/null
+++ b/priv/static/js/metricsgraphics/common/scales.js
@@ -0,0 +1,340 @@
+function mg_add_scale_function(args, scalefcn_name, scale, accessor, inflation) {
+ args.scalefns[scalefcn_name] = function(di) {
+ if (inflation === undefined) return args.scales[scale](di[accessor]);
+ else return args.scales[scale](di[accessor]) + inflation;
+ };
+}
+
+function mg_position(str, args) {
+ if (str === 'bottom' || str === 'top') {
+ return [mg_get_plot_left(args), mg_get_plot_right(args)];
+ }
+
+ if (str === 'left' || str === 'right') {
+ return [mg_get_plot_bottom(args), args.top];
+ }
+}
+
+function mg_cat_position(str, args) {
+ if (str === 'bottom' || str === 'top') {
+ return [mg_get_plot_left(args), mg_get_plot_right(args)];
+ }
+
+ if (str === 'left' || str === 'right') {
+ return [mg_get_plot_bottom(args), mg_get_plot_top(args)];
+ }
+}
+
+function MGScale(args) {
+ // big wrapper around d3 scale that automatically formats & calculates scale bounds
+ // according to the data, and handles other niceties.
+ var scaleArgs = {};
+ scaleArgs.use_inflator = false;
+ scaleArgs.zero_bottom = false;
+ scaleArgs.scaleType = 'numerical';
+
+ this.namespace = function(_namespace) {
+ scaleArgs.namespace = _namespace;
+ scaleArgs.namespace_accessor_name = scaleArgs.namespace + '_accessor';
+ scaleArgs.scale_name = scaleArgs.namespace.toUpperCase();
+ scaleArgs.scalefn_name = scaleArgs.namespace + 'f';
+ return this;
+ };
+
+ this.scaleName = function(scaleName) {
+ scaleArgs.scale_name = scaleName.toUpperCase();
+ scaleArgs.scalefn_name = scaleName +'f';
+ return this;
+ };
+
+ this.inflateDomain = function(tf) {
+ scaleArgs.use_inflator = tf;
+ return this;
+ };
+
+ this.zeroBottom = function(tf) {
+ scaleArgs.zero_bottom = tf;
+ return this;
+ };
+
+ /////////////////////////////////////////////////////////////////////////////////////////////////////////
+ /// all scale domains are either numerical (number, date, etc.) or categorical (factor, label, etc) /////
+ /////////////////////////////////////////////////////////////////////////////////////////////////////////
+ // these functions automatically create the d3 scale function and place the domain.
+
+ this.numericalDomainFromData = function() {
+ var other_flat_data_arrays = [];
+
+ if (arguments.length > 0) {
+ other_flat_data_arrays = arguments;
+ }
+
+ // pull out a non-empty array in args.data.
+ var illustrative_data;
+ for (var i = 0; i < args.data.length; i++) {
+ if (args.data[i].length > 0) {
+ illustrative_data = args.data[i];
+ }
+ }
+ scaleArgs.is_time_series = mg_is_date(illustrative_data[0][args[scaleArgs.namespace_accessor_name]])
+ ? true
+ : false;
+
+ mg_add_scale_function(args, scaleArgs.scalefn_name, scaleArgs.scale_name, args[scaleArgs.namespace_accessor_name]);
+
+ mg_min_max_numerical(args, scaleArgs, other_flat_data_arrays, scaleArgs.use_inflator);
+
+ var time_scale = (args.utc_time)
+ ? d3.scaleUtc()
+ : d3.scaleTime();
+
+ args.scales[scaleArgs.scale_name] = (scaleArgs.is_time_series)
+ ? time_scale
+ : (mg_is_function(args[scaleArgs.namespace + '_scale_type']))
+ ? args.y_scale_type()
+ : (args[scaleArgs.namespace + '_scale_type'] === 'log')
+ ? d3.scaleLog()
+ : d3.scaleLinear();
+
+ args.scales[scaleArgs.scale_name].domain([args.processed['min_' + scaleArgs.namespace], args.processed['max_' + scaleArgs.namespace]]);
+ scaleArgs.scaleType = 'numerical';
+
+ return this;
+ };
+
+ this.categoricalDomain = function(domain) {
+ args.scales[scaleArgs.scale_name] = d3.scaleOrdinal().domain(domain);
+ mg_add_scale_function(args, scaleArgs.scalefn_name, scaleArgs.scale_name, args[scaleArgs.namespace_accessor_name]);
+ return this;
+ };
+
+ this.categoricalDomainFromData = function() {
+ // make args.categorical_variables.
+ // lets make the categorical variables.
+ var all_data = mg_flatten_array(args.data);
+ //d3.set(data.map(function(d){return d[args.group_accessor]})).values()
+ scaleArgs.categoricalVariables = d3.set(all_data.map(function(d) {
+ return d[args[scaleArgs.namespace_accessor_name]]; })).values();
+ args.scales[scaleArgs.scale_name] = d3.scaleBand()
+ .domain(scaleArgs.categoricalVariables);
+
+ scaleArgs.scaleType = 'categorical';
+ return this;
+ };
+
+ /////////////////////////////////////////////////////////////////////////////////////////////////////////////
+ ////////// all scale ranges are either positional (for axes, etc) or arbitrary (colors, size, etc) //////////
+ /////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+ this.numericalRange = function(range) {
+ if (typeof range === 'string') {
+ args
+ .scales[scaleArgs.scale_name]
+ .range(mg_position(range, args));
+ } else {
+ args
+ .scales[scaleArgs.scale_name]
+ .range(range);
+ }
+
+ return this;
+ };
+
+ this.categoricalRangeBands = function(range, halfway) {
+ if (halfway === undefined) halfway = false;
+
+ var namespace = scaleArgs.namespace;
+ var paddingPercentage = args[namespace + '_padding_percentage'];
+ var outerPaddingPercentage = args[namespace + '_outer_padding_percentage'];
+ if (typeof range === 'string') {
+ // if string, it's a location. Place it accordingly.
+ args.scales[scaleArgs.scale_name]
+ .range(mg_position(range, args))
+ .paddingInner(paddingPercentage)
+ .paddingOuter(outerPaddingPercentage);
+ } else {
+ args.scales[scaleArgs.scale_name]
+ .range(range)
+ .paddingInner(paddingPercentage)
+ .paddingOuter(outerPaddingPercentage);
+ }
+
+ mg_add_scale_function(
+ args,
+ scaleArgs.scalefn_name,
+ scaleArgs.scale_name,
+ args[scaleArgs.namespace_accessor_name],
+ halfway
+ ? args.scales[scaleArgs.scale_name].bandwidth() / 2
+ : 0
+ );
+
+ return this;
+ };
+
+ this.categoricalRange = function(range) {
+ args.scales[scaleArgs.scale_name].range(range);
+ mg_add_scale_function(args, scaleArgs.scalefn_name, scaleArgs.scale_name, args[scaleArgs.namespace_accessor_name]);
+ return this;
+ };
+
+ this.categoricalColorRange = function() {
+ args.scales[scaleArgs.scale_name] = args.scales[scaleArgs.scale_name].domain().length > 10
+ ? d3.scaleOrdinal(d3.schemeCategory20)
+ : d3.scaleOrdinal(d3.schemeCategory10);
+
+ args
+ .scales[scaleArgs.scale_name]
+ .domain(scaleArgs.categoricalVariables);
+
+ mg_add_scale_function(args, scaleArgs.scalefn_name, scaleArgs.scale_name, args[scaleArgs.namespace_accessor_name]);
+ return this;
+ };
+
+ this.clamp = function(yn) {
+ args.scales[scaleArgs.scale_name].clamp(yn);
+ return this;
+ };
+
+ return this;
+}
+
+MG.scale_factory = MGScale;
+
+/////////////////////////////// x, x_accessor, markers, baselines, etc.
+function mg_min_max_numerical(args, scaleArgs, additional_data_arrays) {
+ // A BIT OF EXPLANATION ABOUT THIS FUNCTION
+ // This function pulls out all the accessor values in all the arrays in args.data.
+ // We also have this additional argument, additional_data_arrays, which is an array of arrays of raw data values.
+ // These values also get concatenated to the data pulled from args.data, and the extents are calculate from that.
+ // They are optional.
+ //
+ // This may seem arbitrary, but it gives us a lot of flexibility. For instance, if we're calculating
+ // the min and max for the y axis of a line chart, we're going to want to also factor in baselines (horizontal lines
+ // that might potentially be outside of the y value bounds). The easiest way to do this is in the line.js code
+ // & scale creation to just flatten the args.baselines array, pull out hte values, and feed it in
+ // so it appears in additional_data_arrays.
+ var namespace = scaleArgs.namespace;
+ var namespace_accessor_name = scaleArgs.namespace_accessor_name;
+ var use_inflator = scaleArgs.use_inflator;
+ var zero_bottom = scaleArgs.zero_bottom;
+
+ var accessor = args[namespace_accessor_name];
+
+ // add together all relevant data arrays.
+ var all_data = mg_flatten_array(args.data)
+ .map(function(dp) {
+ return dp[accessor]; })
+ .concat(mg_flatten_array(additional_data_arrays));
+
+ // do processing for log
+ if (args[namespace + '_scale_type'] === 'log') {
+ all_data = all_data.filter(function(d) {
+ return d > 0;
+ });
+ }
+
+ // use inflator?
+ var extents = d3.extent(all_data);
+ var min_val = extents[0];
+ var max_val = extents[1];
+
+ // bolt scale domain to zero when the right conditions are met:
+ // not pulling the bottom of the range from data
+ // not zero-bottomed
+ // not a time series
+ if (zero_bottom && !args['min_' + namespace + '_from_data'] && min_val > 0 && !scaleArgs.is_time_series) {
+ min_val = args[namespace + '_scale_type'] === 'log' ? 1 : 0;
+ }
+
+ if (args[namespace + '_scale_type'] !== 'log' && min_val < 0 && !scaleArgs.is_time_series) {
+ min_val = min_val - (min_val - min_val * args.inflator) * use_inflator;
+ }
+
+ if (!scaleArgs.is_time_series) {
+ max_val = (max_val < 0) ? max_val + (max_val - max_val * args.inflator) * use_inflator : max_val * (use_inflator ? args.inflator : 1);
+ }
+
+ min_val = args['min_' + namespace] != null ? args['min_' + namespace] : min_val;
+ max_val = args['max_' + namespace] != null ? args['max_' + namespace] : max_val;
+ // if there's a single data point, we should custom-set the max values
+ // so we're displaying some kind of range
+ if (min_val === max_val && args['min_' + namespace] == null &&
+ args['max_' + namespace] == null) {
+ if (mg_is_date(min_val)) {
+ max_val = new Date(MG.clone(min_val).setDate(min_val.getDate() + 1));
+ } else if (typeof min_val === 'number') {
+ max_val = min_val + 1;
+ mg_force_xax_count_to_be_two(args);
+ }
+ }
+
+ args.processed['min_' + namespace] = min_val;
+ args.processed['max_' + namespace] = max_val;
+ if (args.processed['zoom_' + namespace]) {
+ args.processed['min_' + namespace] = args.processed['zoom_' + namespace][0];
+ args.processed['max_' + namespace] = args.processed['zoom_' + namespace][1];
+ }
+ MG.call_hook('x_axis.process_min_max', args, args.processed.min_x, args.processed.max_x);
+ MG.call_hook('y_axis.process_min_max', args, args.processed.min_y, args.processed.max_y);
+}
+
+function mg_categorical_group_color_scale(args) {
+ if (args.color_accessor !== false) {
+ if (args.ygroup_accessor) {
+ // add a custom accessor element.
+ if (args.color_accessor === null) {
+ args.color_accessor = args.y_accessor;
+ } else {}
+ }
+ if (args.color_accessor !== null) {
+ new MG.scale_factory(args)
+ .namespace('color')
+ .categoricalDomainFromData()
+ .categoricalColorRange();
+ }
+ }
+}
+
+function mg_add_color_categorical_scale(args, domain, accessor) {
+ args.scales.color = d3.scaleOrdinal(d3.schemeCategory20).domain(domain);
+ args.scalefns.color = function(d) {
+ return args.scales.color(d[accessor]);
+ };
+}
+
+function mg_get_categorical_domain(data, accessor) {
+ return d3.set(data.map(function(d) {
+ return d[accessor]; }))
+ .values();
+}
+
+function mg_get_color_domain(args) {
+ var color_domain;
+ if (args.color_domain === null) {
+ if (args.color_type === 'number') {
+ color_domain = d3.extent(args.data[0], function(d) {
+ return d[args.color_accessor]; });
+ } else if (args.color_type === 'category') {
+ color_domain = mg_get_categorical_domain(args.data[0], args.color_accessor);
+
+ }
+ } else {
+ color_domain = args.color_domain;
+ }
+ return color_domain;
+}
+
+function mg_get_color_range(args) {
+ var color_range;
+ if (args.color_range === null) {
+ if (args.color_type === 'number') {
+ color_range = ['blue', 'red'];
+ } else {
+ color_range = null;
+ }
+ } else {
+ color_range = args.color_range;
+ }
+ return color_range;
+}