aboutsummaryrefslogtreecommitdiff
path: root/ldm/data/personalized_style.py
diff options
context:
space:
mode:
Diffstat (limited to 'ldm/data/personalized_style.py')
-rw-r--r--ldm/data/personalized_style.py129
1 files changed, 129 insertions, 0 deletions
diff --git a/ldm/data/personalized_style.py b/ldm/data/personalized_style.py
new file mode 100644
index 0000000..b6be7b1
--- /dev/null
+++ b/ldm/data/personalized_style.py
@@ -0,0 +1,129 @@
+import os
+import numpy as np
+import PIL
+from PIL import Image
+from torch.utils.data import Dataset
+from torchvision import transforms
+
+import random
+
+imagenet_templates_small = [
+ 'a painting in the style of {}',
+ 'a rendering in the style of {}',
+ 'a cropped painting in the style of {}',
+ 'the painting in the style of {}',
+ 'a clean painting in the style of {}',
+ 'a dirty painting in the style of {}',
+ 'a dark painting in the style of {}',
+ 'a picture in the style of {}',
+ 'a cool painting in the style of {}',
+ 'a close-up painting in the style of {}',
+ 'a bright painting in the style of {}',
+ 'a cropped painting in the style of {}',
+ 'a good painting in the style of {}',
+ 'a close-up painting in the style of {}',
+ 'a rendition in the style of {}',
+ 'a nice painting in the style of {}',
+ 'a small painting in the style of {}',
+ 'a weird painting in the style of {}',
+ 'a large painting in the style of {}',
+]
+
+imagenet_dual_templates_small = [
+ 'a painting in the style of {} with {}',
+ 'a rendering in the style of {} with {}',
+ 'a cropped painting in the style of {} with {}',
+ 'the painting in the style of {} with {}',
+ 'a clean painting in the style of {} with {}',
+ 'a dirty painting in the style of {} with {}',
+ 'a dark painting in the style of {} with {}',
+ 'a cool painting in the style of {} with {}',
+ 'a close-up painting in the style of {} with {}',
+ 'a bright painting in the style of {} with {}',
+ 'a cropped painting in the style of {} with {}',
+ 'a good painting in the style of {} with {}',
+ 'a painting of one {} in the style of {}',
+ 'a nice painting in the style of {} with {}',
+ 'a small painting in the style of {} with {}',
+ 'a weird painting in the style of {} with {}',
+ 'a large painting in the style of {} with {}',
+]
+
+per_img_token_list = [
+ 'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת',
+]
+
+class PersonalizedBase(Dataset):
+ def __init__(self,
+ data_root,
+ size=None,
+ repeats=100,
+ interpolation="bicubic",
+ flip_p=0.5,
+ set="train",
+ placeholder_token="*",
+ per_image_tokens=False,
+ center_crop=False,
+ ):
+
+ self.data_root = data_root
+
+ self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
+
+ # self._length = len(self.image_paths)
+ self.num_images = len(self.image_paths)
+ self._length = self.num_images
+
+ self.placeholder_token = placeholder_token
+
+ self.per_image_tokens = per_image_tokens
+ self.center_crop = center_crop
+
+ if per_image_tokens:
+ assert self.num_images < len(per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
+
+ if set == "train":
+ self._length = self.num_images * repeats
+
+ self.size = size
+ self.interpolation = {"linear": PIL.Image.LINEAR,
+ "bilinear": PIL.Image.BILINEAR,
+ "bicubic": PIL.Image.BICUBIC,
+ "lanczos": PIL.Image.LANCZOS,
+ }[interpolation]
+ self.flip = transforms.RandomHorizontalFlip(p=flip_p)
+
+ def __len__(self):
+ return self._length
+
+ def __getitem__(self, i):
+ example = {}
+ image = Image.open(self.image_paths[i % self.num_images])
+
+ if not image.mode == "RGB":
+ image = image.convert("RGB")
+
+ if self.per_image_tokens and np.random.uniform() < 0.25:
+ text = random.choice(imagenet_dual_templates_small).format(self.placeholder_token, per_img_token_list[i % self.num_images])
+ else:
+ text = random.choice(imagenet_templates_small).format(self.placeholder_token)
+
+ example["caption"] = text
+
+ # default to score-sde preprocessing
+ img = np.array(image).astype(np.uint8)
+
+ if self.center_crop:
+ crop = min(img.shape[0], img.shape[1])
+ h, w, = img.shape[0], img.shape[1]
+ img = img[(h - crop) // 2:(h + crop) // 2,
+ (w - crop) // 2:(w + crop) // 2]
+
+ image = Image.fromarray(img)
+ if self.size is not None:
+ image = image.resize((self.size, self.size), resample=self.interpolation)
+
+ image = self.flip(image)
+ image = np.array(image).astype(np.uint8)
+ example["image"] = (image / 127.5 - 1.0).astype(np.float32)
+ return example \ No newline at end of file