diff options
Diffstat (limited to 'ldm/data/personalized.py')
-rw-r--r-- | ldm/data/personalized.py | 220 |
1 files changed, 220 insertions, 0 deletions
diff --git a/ldm/data/personalized.py b/ldm/data/personalized.py new file mode 100644 index 0000000..c02e29d --- /dev/null +++ b/ldm/data/personalized.py @@ -0,0 +1,220 @@ +import os +import numpy as np +import PIL +from PIL import Image +from torch.utils.data import Dataset +from torchvision import transforms + +import random + +training_templates_smallest = [ + 'photo of a sks {}', +] + +reg_templates_smallest = [ + 'photo of a {}', +] + +imagenet_templates_small = [ + 'a photo of a {}', + 'a rendering of a {}', + 'a cropped photo of the {}', + 'the photo of a {}', + 'a photo of a clean {}', + 'a photo of a dirty {}', + 'a dark photo of the {}', + 'a photo of my {}', + 'a photo of the cool {}', + 'a close-up photo of a {}', + 'a bright photo of the {}', + 'a cropped photo of a {}', + 'a photo of the {}', + 'a good photo of the {}', + 'a photo of one {}', + 'a close-up photo of the {}', + 'a rendition of the {}', + 'a photo of the clean {}', + 'a rendition of a {}', + 'a photo of a nice {}', + 'a good photo of a {}', + 'a photo of the nice {}', + 'a photo of the small {}', + 'a photo of the weird {}', + 'a photo of the large {}', + 'a photo of a cool {}', + 'a photo of a small {}', + 'an illustration of a {}', + 'a rendering of a {}', + 'a cropped photo of the {}', + 'the photo of a {}', + 'an illustration of a clean {}', + 'an illustration of a dirty {}', + 'a dark photo of the {}', + 'an illustration of my {}', + 'an illustration of the cool {}', + 'a close-up photo of a {}', + 'a bright photo of the {}', + 'a cropped photo of a {}', + 'an illustration of the {}', + 'a good photo of the {}', + 'an illustration of one {}', + 'a close-up photo of the {}', + 'a rendition of the {}', + 'an illustration of the clean {}', + 'a rendition of a {}', + 'an illustration of a nice {}', + 'a good photo of a {}', + 'an illustration of the nice {}', + 'an illustration of the small {}', + 'an illustration of the weird {}', + 'an illustration of the large {}', + 'an illustration of a cool {}', + 'an illustration of a small {}', + 'a depiction of a {}', + 'a rendering of a {}', + 'a cropped photo of the {}', + 'the photo of a {}', + 'a depiction of a clean {}', + 'a depiction of a dirty {}', + 'a dark photo of the {}', + 'a depiction of my {}', + 'a depiction of the cool {}', + 'a close-up photo of a {}', + 'a bright photo of the {}', + 'a cropped photo of a {}', + 'a depiction of the {}', + 'a good photo of the {}', + 'a depiction of one {}', + 'a close-up photo of the {}', + 'a rendition of the {}', + 'a depiction of the clean {}', + 'a rendition of a {}', + 'a depiction of a nice {}', + 'a good photo of a {}', + 'a depiction of the nice {}', + 'a depiction of the small {}', + 'a depiction of the weird {}', + 'a depiction of the large {}', + 'a depiction of a cool {}', + 'a depiction of a small {}', +] + +imagenet_dual_templates_small = [ + 'a photo of a {} with {}', + 'a rendering of a {} with {}', + 'a cropped photo of the {} with {}', + 'the photo of a {} with {}', + 'a photo of a clean {} with {}', + 'a photo of a dirty {} with {}', + 'a dark photo of the {} with {}', + 'a photo of my {} with {}', + 'a photo of the cool {} with {}', + 'a close-up photo of a {} with {}', + 'a bright photo of the {} with {}', + 'a cropped photo of a {} with {}', + 'a photo of the {} with {}', + 'a good photo of the {} with {}', + 'a photo of one {} with {}', + 'a close-up photo of the {} with {}', + 'a rendition of the {} with {}', + 'a photo of the clean {} with {}', + 'a rendition of a {} with {}', + 'a photo of a nice {} with {}', + 'a good photo of a {} with {}', + 'a photo of the nice {} with {}', + 'a photo of the small {} with {}', + 'a photo of the weird {} with {}', + 'a photo of the large {} with {}', + 'a photo of a cool {} with {}', + 'a photo of a small {} with {}', +] + +per_img_token_list = [ + 'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת', +] + +class PersonalizedBase(Dataset): + def __init__(self, + data_root, + size=None, + repeats=100, + interpolation="bicubic", + flip_p=0.5, + set="train", + placeholder_token="dog", + per_image_tokens=False, + center_crop=False, + mixing_prob=0.25, + coarse_class_text=None, + reg = False + ): + + self.data_root = data_root + + self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)] + + # self._length = len(self.image_paths) + self.num_images = len(self.image_paths) + self._length = self.num_images + + self.placeholder_token = placeholder_token + + self.per_image_tokens = per_image_tokens + self.center_crop = center_crop + self.mixing_prob = mixing_prob + + self.coarse_class_text = coarse_class_text + + if per_image_tokens: + assert self.num_images < len(per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'." + + if set == "train": + self._length = self.num_images * repeats + + self.size = size + self.interpolation = {"linear": PIL.Image.LINEAR, + "bilinear": PIL.Image.BILINEAR, + "bicubic": PIL.Image.BICUBIC, + "lanczos": PIL.Image.LANCZOS, + }[interpolation] + self.flip = transforms.RandomHorizontalFlip(p=flip_p) + self.reg = reg + + def __len__(self): + return self._length + + def __getitem__(self, i): + example = {} + image = Image.open(self.image_paths[i % self.num_images]) + + if not image.mode == "RGB": + image = image.convert("RGB") + + placeholder_string = self.placeholder_token + if self.coarse_class_text: + placeholder_string = f"{self.coarse_class_text} {placeholder_string}" + + if not self.reg: + text = random.choice(training_templates_smallest).format(placeholder_string) + else: + text = random.choice(reg_templates_smallest).format(placeholder_string) + + example["caption"] = text + + # default to score-sde preprocessing + img = np.array(image).astype(np.uint8) + + if self.center_crop: + crop = min(img.shape[0], img.shape[1]) + h, w, = img.shape[0], img.shape[1] + img = img[(h - crop) // 2:(h + crop) // 2, + (w - crop) // 2:(w + crop) // 2] + + image = Image.fromarray(img) + if self.size is not None: + image = image.resize((self.size, self.size), resample=self.interpolation) + + image = self.flip(image) + image = np.array(image).astype(np.uint8) + example["image"] = (image / 127.5 - 1.0).astype(np.float32) + return example
\ No newline at end of file |