aboutsummaryrefslogtreecommitdiff
path: root/ldm/data/personalized.py
diff options
context:
space:
mode:
Diffstat (limited to 'ldm/data/personalized.py')
-rw-r--r--ldm/data/personalized.py220
1 files changed, 220 insertions, 0 deletions
diff --git a/ldm/data/personalized.py b/ldm/data/personalized.py
new file mode 100644
index 0000000..c02e29d
--- /dev/null
+++ b/ldm/data/personalized.py
@@ -0,0 +1,220 @@
+import os
+import numpy as np
+import PIL
+from PIL import Image
+from torch.utils.data import Dataset
+from torchvision import transforms
+
+import random
+
+training_templates_smallest = [
+ 'photo of a sks {}',
+]
+
+reg_templates_smallest = [
+ 'photo of a {}',
+]
+
+imagenet_templates_small = [
+ 'a photo of a {}',
+ 'a rendering of a {}',
+ 'a cropped photo of the {}',
+ 'the photo of a {}',
+ 'a photo of a clean {}',
+ 'a photo of a dirty {}',
+ 'a dark photo of the {}',
+ 'a photo of my {}',
+ 'a photo of the cool {}',
+ 'a close-up photo of a {}',
+ 'a bright photo of the {}',
+ 'a cropped photo of a {}',
+ 'a photo of the {}',
+ 'a good photo of the {}',
+ 'a photo of one {}',
+ 'a close-up photo of the {}',
+ 'a rendition of the {}',
+ 'a photo of the clean {}',
+ 'a rendition of a {}',
+ 'a photo of a nice {}',
+ 'a good photo of a {}',
+ 'a photo of the nice {}',
+ 'a photo of the small {}',
+ 'a photo of the weird {}',
+ 'a photo of the large {}',
+ 'a photo of a cool {}',
+ 'a photo of a small {}',
+ 'an illustration of a {}',
+ 'a rendering of a {}',
+ 'a cropped photo of the {}',
+ 'the photo of a {}',
+ 'an illustration of a clean {}',
+ 'an illustration of a dirty {}',
+ 'a dark photo of the {}',
+ 'an illustration of my {}',
+ 'an illustration of the cool {}',
+ 'a close-up photo of a {}',
+ 'a bright photo of the {}',
+ 'a cropped photo of a {}',
+ 'an illustration of the {}',
+ 'a good photo of the {}',
+ 'an illustration of one {}',
+ 'a close-up photo of the {}',
+ 'a rendition of the {}',
+ 'an illustration of the clean {}',
+ 'a rendition of a {}',
+ 'an illustration of a nice {}',
+ 'a good photo of a {}',
+ 'an illustration of the nice {}',
+ 'an illustration of the small {}',
+ 'an illustration of the weird {}',
+ 'an illustration of the large {}',
+ 'an illustration of a cool {}',
+ 'an illustration of a small {}',
+ 'a depiction of a {}',
+ 'a rendering of a {}',
+ 'a cropped photo of the {}',
+ 'the photo of a {}',
+ 'a depiction of a clean {}',
+ 'a depiction of a dirty {}',
+ 'a dark photo of the {}',
+ 'a depiction of my {}',
+ 'a depiction of the cool {}',
+ 'a close-up photo of a {}',
+ 'a bright photo of the {}',
+ 'a cropped photo of a {}',
+ 'a depiction of the {}',
+ 'a good photo of the {}',
+ 'a depiction of one {}',
+ 'a close-up photo of the {}',
+ 'a rendition of the {}',
+ 'a depiction of the clean {}',
+ 'a rendition of a {}',
+ 'a depiction of a nice {}',
+ 'a good photo of a {}',
+ 'a depiction of the nice {}',
+ 'a depiction of the small {}',
+ 'a depiction of the weird {}',
+ 'a depiction of the large {}',
+ 'a depiction of a cool {}',
+ 'a depiction of a small {}',
+]
+
+imagenet_dual_templates_small = [
+ 'a photo of a {} with {}',
+ 'a rendering of a {} with {}',
+ 'a cropped photo of the {} with {}',
+ 'the photo of a {} with {}',
+ 'a photo of a clean {} with {}',
+ 'a photo of a dirty {} with {}',
+ 'a dark photo of the {} with {}',
+ 'a photo of my {} with {}',
+ 'a photo of the cool {} with {}',
+ 'a close-up photo of a {} with {}',
+ 'a bright photo of the {} with {}',
+ 'a cropped photo of a {} with {}',
+ 'a photo of the {} with {}',
+ 'a good photo of the {} with {}',
+ 'a photo of one {} with {}',
+ 'a close-up photo of the {} with {}',
+ 'a rendition of the {} with {}',
+ 'a photo of the clean {} with {}',
+ 'a rendition of a {} with {}',
+ 'a photo of a nice {} with {}',
+ 'a good photo of a {} with {}',
+ 'a photo of the nice {} with {}',
+ 'a photo of the small {} with {}',
+ 'a photo of the weird {} with {}',
+ 'a photo of the large {} with {}',
+ 'a photo of a cool {} with {}',
+ 'a photo of a small {} with {}',
+]
+
+per_img_token_list = [
+ 'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת',
+]
+
+class PersonalizedBase(Dataset):
+ def __init__(self,
+ data_root,
+ size=None,
+ repeats=100,
+ interpolation="bicubic",
+ flip_p=0.5,
+ set="train",
+ placeholder_token="dog",
+ per_image_tokens=False,
+ center_crop=False,
+ mixing_prob=0.25,
+ coarse_class_text=None,
+ reg = False
+ ):
+
+ self.data_root = data_root
+
+ self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
+
+ # self._length = len(self.image_paths)
+ self.num_images = len(self.image_paths)
+ self._length = self.num_images
+
+ self.placeholder_token = placeholder_token
+
+ self.per_image_tokens = per_image_tokens
+ self.center_crop = center_crop
+ self.mixing_prob = mixing_prob
+
+ self.coarse_class_text = coarse_class_text
+
+ if per_image_tokens:
+ assert self.num_images < len(per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
+
+ if set == "train":
+ self._length = self.num_images * repeats
+
+ self.size = size
+ self.interpolation = {"linear": PIL.Image.LINEAR,
+ "bilinear": PIL.Image.BILINEAR,
+ "bicubic": PIL.Image.BICUBIC,
+ "lanczos": PIL.Image.LANCZOS,
+ }[interpolation]
+ self.flip = transforms.RandomHorizontalFlip(p=flip_p)
+ self.reg = reg
+
+ def __len__(self):
+ return self._length
+
+ def __getitem__(self, i):
+ example = {}
+ image = Image.open(self.image_paths[i % self.num_images])
+
+ if not image.mode == "RGB":
+ image = image.convert("RGB")
+
+ placeholder_string = self.placeholder_token
+ if self.coarse_class_text:
+ placeholder_string = f"{self.coarse_class_text} {placeholder_string}"
+
+ if not self.reg:
+ text = random.choice(training_templates_smallest).format(placeholder_string)
+ else:
+ text = random.choice(reg_templates_smallest).format(placeholder_string)
+
+ example["caption"] = text
+
+ # default to score-sde preprocessing
+ img = np.array(image).astype(np.uint8)
+
+ if self.center_crop:
+ crop = min(img.shape[0], img.shape[1])
+ h, w, = img.shape[0], img.shape[1]
+ img = img[(h - crop) // 2:(h + crop) // 2,
+ (w - crop) // 2:(w + crop) // 2]
+
+ image = Image.fromarray(img)
+ if self.size is not None:
+ image = image.resize((self.size, self.size), resample=self.interpolation)
+
+ image = self.flip(image)
+ image = np.array(image).astype(np.uint8)
+ example["image"] = (image / 127.5 - 1.0).astype(np.float32)
+ return example \ No newline at end of file