diff options
author | XavierXiao <xiaozhisheng950@gmail.com> | 2022-09-06 00:00:21 -0700 |
---|---|---|
committer | XavierXiao <xiaozhisheng950@gmail.com> | 2022-09-06 00:00:21 -0700 |
commit | 8f22429d7406ad450e681c9940c00461b1e3adf9 (patch) | |
tree | 0459d4e4be49ac2945a7b1263856b2313b6847e1 /scripts/txt2img.py |
initial commit
Diffstat (limited to 'scripts/txt2img.py')
-rw-r--r-- | scripts/txt2img.py | 184 |
1 files changed, 184 insertions, 0 deletions
diff --git a/scripts/txt2img.py b/scripts/txt2img.py new file mode 100644 index 0000000..226e6e9 --- /dev/null +++ b/scripts/txt2img.py @@ -0,0 +1,184 @@ +import argparse, os, sys, glob +import torch +import numpy as np +from omegaconf import OmegaConf +from PIL import Image +from tqdm import tqdm, trange +from einops import rearrange +from torchvision.utils import make_grid, save_image + +from ldm.util import instantiate_from_config +from ldm.models.diffusion.ddim import DDIMSampler +from ldm.models.diffusion.plms import PLMSSampler + +def load_model_from_config(config, ckpt, verbose=False): + print(f"Loading model from {ckpt}") + pl_sd = torch.load(ckpt, map_location="cpu") + sd = pl_sd["state_dict"] + model = instantiate_from_config(config.model) + m, u = model.load_state_dict(sd, strict=False) + if len(m) > 0 and verbose: + print("missing keys:") + print(m) + if len(u) > 0 and verbose: + print("unexpected keys:") + print(u) + + model.cuda() + model.eval() + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + + parser.add_argument( + "--prompt", + type=str, + nargs="?", + default="a painting of a virus monster playing guitar", + help="the prompt to render" + ) + + parser.add_argument( + "--outdir", + type=str, + nargs="?", + help="dir to write results to", + default="outputs/txt2img-samples" + ) + parser.add_argument( + "--ddim_steps", + type=int, + default=200, + help="number of ddim sampling steps", + ) + + parser.add_argument( + "--plms", + action='store_true', + help="use plms sampling", + ) + + parser.add_argument( + "--ddim_eta", + type=float, + default=0.0, + help="ddim eta (eta=0.0 corresponds to deterministic sampling", + ) + parser.add_argument( + "--n_iter", + type=int, + default=1, + help="sample this often", + ) + + parser.add_argument( + "--H", + type=int, + default=256, + help="image height, in pixel space", + ) + + parser.add_argument( + "--W", + type=int, + default=256, + help="image width, in pixel space", + ) + + parser.add_argument( + "--n_samples", + type=int, + default=4, + help="how many samples to produce for the given prompt", + ) + + parser.add_argument( + "--scale", + type=float, + default=5.0, + help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", + ) + + parser.add_argument( + "--ckpt_path", + type=str, + default="/data/pretrained_models/ldm/text2img-large/model.ckpt", + help="Path to pretrained ldm text2img model") + + parser.add_argument( + "--embedding_path", + type=str, + help="Path to a pre-trained embedding manager checkpoint") + + opt = parser.parse_args() + + + config = OmegaConf.load("configs/latent-diffusion/txt2img-1p4B-eval_with_tokens.yaml") # TODO: Optionally download from same location as ckpt and chnage this logic + model = load_model_from_config(config, opt.ckpt_path) # TODO: check path + #model.embedding_manager.load(opt.embedding_path) + + device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") + model = model.to(device) + + if opt.plms: + sampler = PLMSSampler(model) + else: + sampler = DDIMSampler(model) + + os.makedirs(opt.outdir, exist_ok=True) + outpath = opt.outdir + + prompt = opt.prompt + + + sample_path = os.path.join(outpath, "samples") + os.makedirs(sample_path, exist_ok=True) + base_count = len(os.listdir(sample_path)) + + all_samples=list() + with torch.no_grad(): + with model.ema_scope(): + uc = None + if opt.scale != 1.0: + uc = model.get_learned_conditioning(opt.n_samples * [""]) + for n in trange(opt.n_iter, desc="Sampling"): + c = model.get_learned_conditioning(opt.n_samples * [prompt]) + shape = [4, opt.H//8, opt.W//8] + samples_ddim, _ = sampler.sample(S=opt.ddim_steps, + conditioning=c, + batch_size=opt.n_samples, + shape=shape, + verbose=False, + unconditional_guidance_scale=opt.scale, + unconditional_conditioning=uc, + eta=opt.ddim_eta) + + x_samples_ddim = model.decode_first_stage(samples_ddim) + x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) + + for x_sample in x_samples_ddim: + x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') + Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:04}.jpg")) + base_count += 1 + all_samples.append(x_samples_ddim) + + + # additionally, save as grid + grid = torch.stack(all_samples, 0) + grid = rearrange(grid, 'n b c h w -> (n b) c h w') + + for i in range(grid.size(0)): + save_image(grid[i, :, :, :], os.path.join(outpath,opt.prompt+'_{}.png'.format(i))) + + grid = make_grid(grid, nrow=opt.n_samples) + + + # to image + grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() + Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'{prompt.replace(" ", "-")}.jpg')) + + + + print(f"Your samples are ready and waiting four you here: \n{outpath} \nEnjoy.") |